Copied to
clipboard

G = C9×C42⋊C3order 432 = 24·33

Direct product of C9 and C42⋊C3

direct product, metabelian, soluble, monomial, A-group

Aliases: C9×C42⋊C3, (C4×C36)⋊1C3, C42⋊C93C3, C421(C3×C9), C22.(C9×A4), (C2×C18).2A4, (C4×C12).1C32, (C2×C6).6(C3×A4), C3.1(C3×C42⋊C3), (C3×C42⋊C3).2C3, SmallGroup(432,99)

Series: Derived Chief Lower central Upper central

C1C42 — C9×C42⋊C3
C1C22C42C4×C12C3×C42⋊C3 — C9×C42⋊C3
C42 — C9×C42⋊C3
C1C9

Generators and relations for C9×C42⋊C3
 G = < a,b,c,d | a9=b4=c4=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc-1, dcd-1=b-1c2 >

3C2
16C3
16C3
16C3
3C4
3C4
3C6
16C32
16C9
16C9
3C2×C4
3C12
3C12
4A4
4A4
4A4
3C18
16C3×C9
3C2×C12
3C36
3C36
4C3.A4
4C3.A4
4C3×A4
3C2×C36
4C9×A4

Smallest permutation representation of C9×C42⋊C3
On 108 points
Generators in S108
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)
(1 54 44 59)(2 46 45 60)(3 47 37 61)(4 48 38 62)(5 49 39 63)(6 50 40 55)(7 51 41 56)(8 52 42 57)(9 53 43 58)(10 107)(11 108)(12 100)(13 101)(14 102)(15 103)(16 104)(17 105)(18 106)(19 33)(20 34)(21 35)(22 36)(23 28)(24 29)(25 30)(26 31)(27 32)(64 85 75 99)(65 86 76 91)(66 87 77 92)(67 88 78 93)(68 89 79 94)(69 90 80 95)(70 82 81 96)(71 83 73 97)(72 84 74 98)
(1 59 44 54)(2 60 45 46)(3 61 37 47)(4 62 38 48)(5 63 39 49)(6 55 40 50)(7 56 41 51)(8 57 42 52)(9 58 43 53)(10 34 107 20)(11 35 108 21)(12 36 100 22)(13 28 101 23)(14 29 102 24)(15 30 103 25)(16 31 104 26)(17 32 105 27)(18 33 106 19)
(1 102 72)(2 103 64)(3 104 65)(4 105 66)(5 106 67)(6 107 68)(7 108 69)(8 100 70)(9 101 71)(10 79 40)(11 80 41)(12 81 42)(13 73 43)(14 74 44)(15 75 45)(16 76 37)(17 77 38)(18 78 39)(19 88 49)(20 89 50)(21 90 51)(22 82 52)(23 83 53)(24 84 54)(25 85 46)(26 86 47)(27 87 48)(28 97 58)(29 98 59)(30 99 60)(31 91 61)(32 92 62)(33 93 63)(34 94 55)(35 95 56)(36 96 57)

G:=sub<Sym(108)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108), (1,54,44,59)(2,46,45,60)(3,47,37,61)(4,48,38,62)(5,49,39,63)(6,50,40,55)(7,51,41,56)(8,52,42,57)(9,53,43,58)(10,107)(11,108)(12,100)(13,101)(14,102)(15,103)(16,104)(17,105)(18,106)(19,33)(20,34)(21,35)(22,36)(23,28)(24,29)(25,30)(26,31)(27,32)(64,85,75,99)(65,86,76,91)(66,87,77,92)(67,88,78,93)(68,89,79,94)(69,90,80,95)(70,82,81,96)(71,83,73,97)(72,84,74,98), (1,59,44,54)(2,60,45,46)(3,61,37,47)(4,62,38,48)(5,63,39,49)(6,55,40,50)(7,56,41,51)(8,57,42,52)(9,58,43,53)(10,34,107,20)(11,35,108,21)(12,36,100,22)(13,28,101,23)(14,29,102,24)(15,30,103,25)(16,31,104,26)(17,32,105,27)(18,33,106,19), (1,102,72)(2,103,64)(3,104,65)(4,105,66)(5,106,67)(6,107,68)(7,108,69)(8,100,70)(9,101,71)(10,79,40)(11,80,41)(12,81,42)(13,73,43)(14,74,44)(15,75,45)(16,76,37)(17,77,38)(18,78,39)(19,88,49)(20,89,50)(21,90,51)(22,82,52)(23,83,53)(24,84,54)(25,85,46)(26,86,47)(27,87,48)(28,97,58)(29,98,59)(30,99,60)(31,91,61)(32,92,62)(33,93,63)(34,94,55)(35,95,56)(36,96,57)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108), (1,54,44,59)(2,46,45,60)(3,47,37,61)(4,48,38,62)(5,49,39,63)(6,50,40,55)(7,51,41,56)(8,52,42,57)(9,53,43,58)(10,107)(11,108)(12,100)(13,101)(14,102)(15,103)(16,104)(17,105)(18,106)(19,33)(20,34)(21,35)(22,36)(23,28)(24,29)(25,30)(26,31)(27,32)(64,85,75,99)(65,86,76,91)(66,87,77,92)(67,88,78,93)(68,89,79,94)(69,90,80,95)(70,82,81,96)(71,83,73,97)(72,84,74,98), (1,59,44,54)(2,60,45,46)(3,61,37,47)(4,62,38,48)(5,63,39,49)(6,55,40,50)(7,56,41,51)(8,57,42,52)(9,58,43,53)(10,34,107,20)(11,35,108,21)(12,36,100,22)(13,28,101,23)(14,29,102,24)(15,30,103,25)(16,31,104,26)(17,32,105,27)(18,33,106,19), (1,102,72)(2,103,64)(3,104,65)(4,105,66)(5,106,67)(6,107,68)(7,108,69)(8,100,70)(9,101,71)(10,79,40)(11,80,41)(12,81,42)(13,73,43)(14,74,44)(15,75,45)(16,76,37)(17,77,38)(18,78,39)(19,88,49)(20,89,50)(21,90,51)(22,82,52)(23,83,53)(24,84,54)(25,85,46)(26,86,47)(27,87,48)(28,97,58)(29,98,59)(30,99,60)(31,91,61)(32,92,62)(33,93,63)(34,94,55)(35,95,56)(36,96,57) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108)], [(1,54,44,59),(2,46,45,60),(3,47,37,61),(4,48,38,62),(5,49,39,63),(6,50,40,55),(7,51,41,56),(8,52,42,57),(9,53,43,58),(10,107),(11,108),(12,100),(13,101),(14,102),(15,103),(16,104),(17,105),(18,106),(19,33),(20,34),(21,35),(22,36),(23,28),(24,29),(25,30),(26,31),(27,32),(64,85,75,99),(65,86,76,91),(66,87,77,92),(67,88,78,93),(68,89,79,94),(69,90,80,95),(70,82,81,96),(71,83,73,97),(72,84,74,98)], [(1,59,44,54),(2,60,45,46),(3,61,37,47),(4,62,38,48),(5,63,39,49),(6,55,40,50),(7,56,41,51),(8,57,42,52),(9,58,43,53),(10,34,107,20),(11,35,108,21),(12,36,100,22),(13,28,101,23),(14,29,102,24),(15,30,103,25),(16,31,104,26),(17,32,105,27),(18,33,106,19)], [(1,102,72),(2,103,64),(3,104,65),(4,105,66),(5,106,67),(6,107,68),(7,108,69),(8,100,70),(9,101,71),(10,79,40),(11,80,41),(12,81,42),(13,73,43),(14,74,44),(15,75,45),(16,76,37),(17,77,38),(18,78,39),(19,88,49),(20,89,50),(21,90,51),(22,82,52),(23,83,53),(24,84,54),(25,85,46),(26,86,47),(27,87,48),(28,97,58),(29,98,59),(30,99,60),(31,91,61),(32,92,62),(33,93,63),(34,94,55),(35,95,56),(36,96,57)]])

72 conjugacy classes

class 1  2 3A3B3C···3H4A4B4C4D6A6B9A···9F9G···9R12A···12H18A···18F36A···36X
order12333···34444669···99···912···1218···1836···36
size131116···163333331···116···163···33···33···3

72 irreducible representations

dim11111333333
type++
imageC1C3C3C3C9A4C3×A4C42⋊C3C9×A4C3×C42⋊C3C9×C42⋊C3
kernelC9×C42⋊C3C42⋊C9C4×C36C3×C42⋊C3C42⋊C3C2×C18C2×C6C9C22C3C1
# reps1422181246824

Matrix representation of C9×C42⋊C3 in GL6(𝔽37)

700000
070000
007000
000100
000010
000001
,
3600000
0360000
001000
0003100
0000310
0000036
,
3600000
010000
0036000
000600
000010
0000031
,
0260000
0026000
2600000
000010
000001
000100

G:=sub<GL(6,GF(37))| [7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,31,0,0,0,0,0,0,31,0,0,0,0,0,0,36],[36,0,0,0,0,0,0,1,0,0,0,0,0,0,36,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,31],[0,0,26,0,0,0,26,0,0,0,0,0,0,26,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0] >;

C9×C42⋊C3 in GAP, Magma, Sage, TeX

C_9\times C_4^2\rtimes C_3
% in TeX

G:=Group("C9xC4^2:C3");
// GroupNames label

G:=SmallGroup(432,99);
// by ID

G=gap.SmallGroup(432,99);
# by ID

G:=PCGroup([7,-3,-3,-3,-2,2,-2,2,50,1515,360,10399,102,9077,15882]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^4=c^4=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^-1,d*c*d^-1=b^-1*c^2>;
// generators/relations

Export

Subgroup lattice of C9×C42⋊C3 in TeX

׿
×
𝔽